Contrasting the Genetic Architecture of 30 Complex Traits from Summary Association Data.

نویسندگان

  • Huwenbo Shi
  • Gleb Kichaev
  • Bogdan Pasaniuc
چکیده

Variance-component methods that estimate the aggregate contribution of large sets of variants to the heritability of complex traits have yielded important insights into the genetic architecture of common diseases. Here, we introduce methods that estimate the total trait variance explained by the typed variants at a single locus in the genome (local SNP heritability) from genome-wide association study (GWAS) summary data while accounting for linkage disequilibrium among variants. We applied our estimator to ultra-large-scale GWAS summary data of 30 common traits and diseases to gain insights into their local genetic architecture. First, we found that common SNPs have a high contribution to the heritability of all studied traits. Second, we identified traits for which the majority of the SNP heritability can be confined to a small percentage of the genome. Third, we identified GWAS risk loci where the entire locus explains significantly more variance in the trait than the GWAS reported variants. Finally, we identified loci that explain a significant amount of heritability across multiple traits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A powerful approach to estimating annotation-stratified genetic covariance using GWAS summary statistics

~150 words) Despite the success of large-scale genome-wide association studies (GWASs) on complex traits, our understanding of their genetic architecture is far from complete. Jointly modeling multiple traits’ genetic profiles has provided insights into the shared genetic basis of many complex traits. However, large-scale inference sets a high bar for both statistical power and interpretability...

متن کامل

What can genome-wide association studies tell us about the evolutionary forces maintaining genetic variation for quantitative traits?

Contents 21 I. 21 II. 22 III. 24 IV. 25 V. 29 30 References 30 SUMMARY: Understanding the evolutionary forces that shape genetic variation within species has long been a goal of evolutionary biology. Integrating data for the genetic architecture of traits from genome-wide association mapping studies (GWAS) along with the development of new population genetic methods for identifying selection in...

متن کامل

A Powerful Approach to Estimating Annotation-Stratified Genetic Covariance via GWAS Summary Statistics.

Despite the success of large-scale genome-wide association studies (GWASs) on complex traits, our understanding of their genetic architecture is far from complete. Jointly modeling multiple traits' genetic profiles has provided insights into the shared genetic basis of many complex traits. However, large-scale inference sets a high bar for both statistical power and biological interpretability....

متن کامل

Marginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data

A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...

متن کامل

Integrating gene expression with summary association statistics to identify susceptibility genes for 30 complex traits

Although genome-wide association studies (GWASs) have identified thousands of risk loci for many complex traits and diseases, the causal variants and genes at these loci remain largely unknown. We leverage recently introduced methods to integrate gene expression measurements from 45 expression panels with summary GWAS data to perform 30 transcriptome-wide association studies (TWASs). We identif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of human genetics

دوره 99 1  شماره 

صفحات  -

تاریخ انتشار 2016